公举小说网

手机浏览器扫描二维码访问

第63章 天才总是特殊的感谢大佬石中隐鱼的打赏(第3页)

王东来说的滔滔不绝,简单清楚又明了,一看就知道是真的了解这些内容。

韩华在心里其实也逐渐相信起这篇论文是王东来自己写出来的,不过还是挑了几个问题问了起来,“什么是互质关系?”

这个问题很简单,只要看过书都能知道,但是根据课程,王东来还没有学过。

“质数又称素数,有无限个。

一个大于1的自然数,除了1和它本身外,不能被其他自然数整除,换句话说就是该数除了1和它本身以外不再有其他的因数;否则称为合数,如果两个正整数,除了1以外,没有其他公因子,我们就称这两个数是互质关系。

互质关系不要求两个数都是质数,合数也可以和一个质数构成互质关系。”

王东来迅速地回答出来。

韩华紧接着问道:“那你再说说欧拉函数。”

“欧拉函数是指对正整数n,欧拉函数是小于n的正整数中与n互质的数的数目,用φ表示。”

“例如φ=4,因为1357均和8互质。”

“若n是质数p的k次幂,除了p的倍数外,其他数都跟n互质,则数学公式为……”

“若m,n互质,则数学公式为……”

“当n为奇数时,则数学公式为……”

“当n为质数时,则数学公式为……”

对答如流,完全不像是一个刚入学的大一新生,其流利程度在韩华看来,已经不弱于一些大三学生了。

在办公室里面的三位学长,这个时候也停下了手上的动作,认真地听着王东来和鹅韩华的一问一答。

“模反元素。”

“如果两个正整数a和n互质,那么一定可以找到整数b,使得ab-1被n整除,或者说ab被n除的余数是1。

这时,b就叫做a的‘模反元素’。”

“比如3和11互质,那么3的模反元素就是4,因为-1可以被11整除。

显然,模反元素不止一个,4加减11的整数倍都是3的模反元素{…,-18,-7,4,15,26,…},即如果b是a的模反元素,则b+kn都是a的模反元素。”

“那欧拉定理呢?”

“欧拉定理是一个关于同余的性质。

欧拉定理表明,若n,a为正整数,且n,a互质,则有aφ≡1。”

“假设正整数a与质数p互质,因为φ=p-1,则欧拉定理可以写成a≡1。”

等王东来说完之后,韩华下意识地鼓起掌来。

“好好好,我确实没想到你会给我这么大的惊喜。”

“先前,你的论文质量很高,我以为不是你写的,所以才这么问你,想看看你究竟懂不懂,倒是没想到你给了我这么大的一个惊喜。”

“你的论文没有问题,论证的过程也很完美,只不过就是有些排版上的小问题以及引用文献时的错误,这些都是小问题,稍微改一下就是了。”

“只不过,你知道你这篇论文真正的价值吗?”

韩华说完之后,便静静地看着王东来,等着他的回答。

热门小说推荐
千里宦途

千里宦途

普通人只要有机会,也可以封侯拜相。看王子枫一个普通的小人物,如何抓住机会搅动风云。每个人都可能是千里马。...

极品对手

极品对手

他们都是草根出生,凭自己的努力走上仕途,但一个清廉,一个腐败,于是一见面就成了格格不入的对手...

直上青云

直上青云

性格嚣张的林飞扬走马上任镇委书记当天就得罪了顶头上司,让大领导颜面无存,差点被就地免职,且看这个嚣张到骨子里的家伙如何凭借孙子兵法和三十六计勇闯重重危机,智破层层陷阱,在官场上混得风生水起,扶摇直上…...

永恒之门

永恒之门

关于永恒之门神魔混战,万界崩塌,只永恒仙域长存世间。尘世罹苦,妖祟邪乱,诸神明弃众生而不朽。万古后,一尊名为赵云的战神,凝练了天地玄黄,重铸了宇宙洪荒,自碧落凡尘,一路打上了永恒仙域,以神之名,君临万道。自此,他说的话,便是神话。...

官梯险情

官梯险情

叶峰一踏上官梯就遇到两类险情一是多种危险的感情,二是各种惊险的官斗。叶峰三十六岁就被提拔为县教育局副局长,从报到那天起就被卷入这两种险情的惊涛骇浪中。他是草根出生,却有顽强的意志和搏击风浪的能力,他像一叶小舟在惊险莫测的宦海里沉浮出没,劈波斩浪,扬帆远航,步步高升。...

九份婚书:我的师父绝色倾城

九份婚书:我的师父绝色倾城

简介我叫江羽,本想一直留在山上陪着我的绝色师父,却被师父赶去祸害未婚妻了。而且多少?九份婚书!?...

每日热搜小说推荐